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Abstract—Designing materials that are resistant to extreme
temperatures and brittleness relies on assessing structural
dynamics of samples. Algorithms are critically important to
characterize material deformation under stress conditions.
Here, we report on our design of coarse-grain parallel al-
gorithms for image quality assessment based on structural
information and on crack detection of gigabyte-scale experi-
mental datasets. We show how key steps can be decomposed
into distinct processing flows, one based on structural similarity
(SSIM) quality measure, and another on spectral content. These
algorithms act upon image blocks that fit into memory, and
can execute independently. We discuss the scientific relevance
of the problem, key developments, and decomposition of
complementary tasks into separate executions. We show how
to apply SSIM to detect material degradation, and illustrate
how this metric can be allied to spectral analysis for structure
probing, while using tiled multi-resolution pyramids stored in
HDF5 chunked multi-dimensional arrays. Results show that the
proposed experimental data representation supports an average
compression rate of 10X, and data compression scales linearly
with the data size. We also illustrate how to correlate SSIM
to crack formation, and how to use our numerical schemes to
enable fast detection of deformation from 3D datasets evolving
in time.

Keywords-pattern recognition; structure analysis; spectral
methods; material inspection;

I. INTRODUCTION

Scientific facilities that produce experimentally acquired
data, such as light sources [2], will generate petabytes of
data per hour by the year of 2020. Existing software tools for
automated image analysis lack capabilities to process both
current and future high-resolution image-based data coming
from experiments. For example, much of the material failure
investigation relies on visual inspection, a time-consuming
task that hinders productivity and accuracy, particularly
because the human vision quickly adapts to distorted signals
among adjacent image slices.

Optical microscopy and 2D scanning have been the main
imaging acquisition techniques for modeling deformation
and damage of composites for many years. More recently,
X-ray computed tomography (micro-CT) has offered new
opportunities to perform microstructural analysis, particu-
larly in investigations of fiber reinforced polymer (FRP). In
fact, micro-CT (Fig. 1) holds the promise to improve the
overall analysis of how complex FRP-based objects deform,

damage, and ultimately fail [14].
This paper introduces automatic algorithms to evaluate

FRP material deformation (Fig. 1) by calculating the relative
importance of regions with respect to signal variation across
different time steps. We frame key algorithms into distinct
processes that can execute simultaneously, offering potential
for significant speedup. Our pattern recognition pipeline
for material deformation detection is designed to explore
coarse grain parallelism, and consists of two sets of codes:
a probe for dissimilarity among slices and algorithms for
crack detection. Our proposed extension of the structural
similarity index measure (SSIM) supports detecting degra-
dation of material structure [13], and acts on image blocks
that fit in memory and are independent. Concurrently, our
crack detection algorithms seek micro-fractures and recover
the volume of material failure. Together, these algorithms
quickly lead the experimentalist to regions of the sample
that contain distortions likely to be associated to material
damage and/or image acquisition issues.

Our contribution is three-fold: (a) we design a scheme to
compare local patterns of voxel intensities to deliver total
variation curves of SSIM; (b) we deploy methods to detect
micro-crack volumes from samples whose fiber bundles have
a favored direction; (c) we lay out a processing construct that
can explore parallelism to perform required computations.

The remainder of this paper is organized as follows.
Sec. II describes the algorithms composing the proposed
image analysis workflow. Sec. III presents the results ob-
tained after applying the proposed algorithms to a 90GB
of raw experimental data along with the computational per-
formance analysis. Sec. IV and Sec. V provide discussions,
conclusions and future works.

II. MATERIALS AND METHODS

Before real applications of new materials, such as ceram-
ics, samples go through damage characterization to inform
engineers about the structural dynamics. Time-lapse micro-
CT imagery allows tracking 3D changes in material structure
over time. The diagram in Fig. 2 indicates the data flow
necessary for identifying damage processes from micro-CT
images.

The proposed algorithms are part of an image analy-
sis pipeline composed of two main science questions: (a)



Figure 1. In situ X-ray µ-CT: reconstructed slice (left) and sample isolation
(right) as in [11].

when does the damage start occurring? and (b) what is
the volume of the crack opening? These are fundamental
analysis requirements necessary to evaluate large datasets
from structural dynamics experiments.

Tackling the question (a) requires three main tasks: 3D
non-linear filtering, graph-based segmentation and spectral
analysis. Specifically, we filter the data using our accelerated
non-linear transformations in F3D [11], such as bilateral,
median, and morphological operators in order to decrease
noise and improve contrast. Next, we segment the compos-
ite into homogeneous regions using algorithms based on
graphical models, such as Statistical Region Merging [4],
and obtain a binary representation of the data. The last
step takes advantage of the striped patterns of the data
after vertical projection, followed by filtering and analysis
in Fourier space, similarly to [12].

Our algorithm solution to the second question (b) also
starts with raw data as input, but now using 2D slices of the
microCT data. Each slice passes through a denoising step
and then SSIM is calculated for the complete stack. The
SSIM results provide inputs to design total variation curves
in order to detect disparities throughout the image stack.
The following sections describe details of the proposed
algorithms used in this image analysis framework.

A. High-resolution 3D images
One way to reveal how new composites decay at mi-

croscale level is to deform samples by applying tensile
loads using a displacement controlled loading system. This
is the case of our datasets, which contain cross-sections of a
ceramic composite under different compressive loads [1].
Using X-ray radiation to probe the material structure at
micrometer scale, the LBNL ALS beamline 8.3.2 [2], [10]
acquires samples at high-resolution. The reconstructed sam-
ples from the parallel-beam projection data are image stacks,
as illustrated in Fig. 1.

We test our algorithms on these real experimental datasets
consisting of silicon carbide-based composite samples,

which are the result of materials load-bearing capacity tests
under increasing strain. This paper refers to image stacks
of 15GB [1], [11], with spatial resolution of 0.65µm, and
under three different load (in newtons) conditions: 16.01N,
122.33N and 144.57N. Different phases of the material
cannot be obtained through simple gray level cut-offs due to
inherent artifacts, such as brightness variations across slices
and noise, that may come from preceding image acquisition,
reconstruction steps and/or sample composition.

The proposed algorithms consider 3D stacks of microto-
mograph images as input and output both the crack opening
displacement volume as well as total variation curves during
the evolution of the experiment for different loads. In order
to access the sample at different scales as well as to
compress the datasets, we design tools around hierarchical
data formats as explained in the next section.

B. Terabyte-size image representation tools
One of the challenges of working with large image stacks

is to maintain several copies of the data and at different
resolutions. Despite the fact that microstructure analysis
requires high-resolution data, much of sample processing
starts with the identification of the sample bulk parts, for ex-
ample, foreground and background, or mesoscale attributes,
such as volume. Frequently, these multiscale representations
are repeatedly computed or precomputed data versions are
stored in the file system, lacking proper connection to the
original data and/or connection to metadata associated to the
experimental data collection.

Motivated by these demands, we calculate tiled multi-
resolution pyramids at four different scales and store them
in HDF5 chunked multi-dimensional arrays through Big-
DataViewer [6]. This plugin originally offers interactive
arbitrary virtual reslicing of multi-terabyte recordings, so
that the user can inspect the experimental data efficiently [5].
It can also be used to compress files, based on XML
and HDF5, to allow encapsulation of terabyte-size image
datasets, including metadata, and optimized access to mul-
tiple scales of the data, both for visualization as well as
for processing. Other advantages of BigDataViewer format-
ting are: a) increased computing performance, b) decreased
cluttering of the experimental archives, and c) potential for
parallel I/O.

We build upon this work to deliver an image analysis
pipeline that explores the multi-dimensional representation
to provide a viable way to store and process large image
stacks, and to enable the image facility users, such as those
at the ALS [2], to access their data even when using their
standard laptop. Sec. III demonstrates performance results
regarding data compression.

C. Unstriped samples and crack opening displacement
Transverse CT slices parallel to the axis of the fibers

produce striped patterns of the material. This image trans-
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Figure 2. Image analysis workflow for high-resolution x-ray micro-tomography data: stack destriping and crack detection (* indicates proposed algorithms).

formation suggests an approach: by removing the fibers,
whose intensity levels and local contrast descriptors are very
similar to those at the microfractures, we can then recover
the material crack opening displacement.

We propose destriping transformations based on spectral
filters to focus on damage evolution on FRP. Relying on
bandpass filters [12], our algorithm consists of suppressing
structures that are parallel to the z-axis and smaller than
5µm, which corresponds to the fiber diameter. The striped
patterns appear in the Fourier space as combined points
of large amplitude, so those peaks can be detected and
overcome. Moreover, the algorithm performs a shading
correction by filtering in Fourier space.

By exploring the prior information, e.g., the fibers in our
FRP samples display a particular direction, we can suppress
stripes aligned vertically by compressing Fourier compo-
nents along the fiber main direction. The unstriped image
stack carries prominent information about cracks, which
are easily binarized before the calculation of crack-opening
measurements. Details about our segmentation algorithms
for micro-CT can be found in [9], [10], [11].

D. Structural Similarity Index Measure

Image quality assessment aims at extracting quantita-
tive measures to automatically translate perceived image
interrelation into a structural similarity index measure or
SSIM. Previous work [13], [7] estimates image degradations
by exploring structural information from image intensity
statistics between two images.

Different from previous work, we refactor SSIM to ex-
plore the structural information from two adjacent image
slices, x and y. Next the SSIM algorithm separates the local
variation of each slice into three components: luminance
(l(x, y)), contrast (c(x, y)) and structure (s(x, y)). These
components are calculated between consecutive slices of
the stack in order to provide a similarity index S(x, y) =
f(l(x, y), c(x, y), s(x, y)), which is symmetric, bounded and

presents unique maximum. Using image intensity statistics
to define each of the components, the resulting similarity
measure, SSIM, is:
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are the local means,
standard deviations and covariance for x and y, and are
computed within a local 8 x 8 square window.

Building upon this work, we extend the SSIM con-
cept to time-lapsed 3D image analysis and quantify image
distortions across stacks to finally compare variations at
different times steps of the experiment. This comparison
entails the design of curves of total variation (TV) based
on SSIM to find sample regions that contain distortions
likely to be associated to material damage and/or image
acquisition failure. Algorithm 1 describes the steps necessary
to obtain TV curves, which include preprocessing of the
cross-sections, followed by structural similarity calculation
for two adjacent slices that produces a SSIM 2D matrix with
same dimension as the cross-section. Finally, we calculate
the integrated density, TV , normalized by the area of each
z cross-section, for TV defined as in equation 2, where i

and j are the 2D cross-section image indexes.

TV (z) =
X

i,j

SSIM

i,j

(2)

Fig. 5 illustrates TV curves, which enables to monitor im-
age discrepancies throughout the 3D stack at different points
in time, providing a quick feedback to the experimentalist
with regards to sample deformation.

One of the main advantages of extending SSIM algorithm
to stacks is the opportunity to parallelize the SSIM calcula-
tion at no communication of results between tasks since the



Algorithm 1 Total Variation curves from SSIM
Input: Original image stacks
Output: TV curves across z-axis for each time step

1: fiberDirection = vertical
2: for t = 0 to nsteps-1 do
3: edge-preserving smoothing of Volume(t)
4: for v = 0 to nslices-2 do
5: x  Volume(t,v)
6: y  Volume(t,v+1)
7: s  SSIM(x,y)
8: if s

i,j

<= 0 then
9: s

i,j

 1
10: end if
11: G

z

 integratedDensity(s) / area(s)
12: end for
13: end for

slice computation is pairwise dependent. Considering a 3D
stack at a specific time step, image blocks (sets of image
slices) that fit into memory can be distributed across com-
puting nodes where the SSIM is calculated independently.
At a higher level, the computation of SSIM for stacks at
different points in time can also be processed in parallel.

III. RESULTS

The scheme proposed in Fig. 2 emphasizes the decompo-
sition of computing tasks into two independent processes:
process A using spectral analysis to detect the micro-crack
volumes from unstriped samples, and process B using SSIM
to compare local patterns of voxel intensities and extract
total variation curves of SSIM.

Given the initial 90GB of raw experimental data, com-
posed by 16-bit image stacks, we transformed the data
into multi-resolution pyramids using BigDataViewer [6], [5].
The original data consisted of sets of .tif slices (2D cross-
sections of 1,800 x 1,950 pixel), transformed into tiled multi-
resolution pyramids at four different resolutions, 0.65, 1.3,
2.6 and 5.2 µm per voxel. The pyramidal representation im-
plies no storage overhead for additional image tiles because
BigDataViewer carries out the required indexing and trans-
formation on the fly, based on automatically generated XML
files. In fact, the total needed storage drops drastically with
the BigDataViewer transformation, even though it allows
retrieval of the images with the original high resolution and
successively lower resolutions. Fig. 3 shows the scalability
of this representation for increasing data sizes, providing an
average compression rate of 10X.

Furthermore, the chunked multi-dimensional array scheme
of BigDataViewer maximizes the performance of I/O op-
erations at different resolutions of the image stack. The
proposed algorithms for image processing at different image
scales requires no communication between tasks, which

Figure 3. Scalability of the multi-dimensional representation using HDF5
with increasing data size.

makes the performance gain optimal for our image analysis
pipeline.

Fig. 4 shows the results of executing the process A in order
to recover the crack open displacement for three different
steps of the experiment, and combining results in a single
domain for visualization purposes. The volume rendering
(gray level voxels) represent the sample before the micro-
fracture since no crack was detected, the green surface
indicates the detected crack displacement when the sample is
under 122.33N, and the red surface is the complement to the
evolving fracture, when the sample is subjected to 144.57N.
Fig. 4(a) renders all time steps with no transparencies,
while Fig. 4(b) emphasizes the crack opening displacements
occurred in two different time steps and exposes the fibers
removed by the destriping algorithm. Instead, Fig. 4(c)
shows a cross-section of the sample under 16.01N and the
detected crack opening displacements volumes for 122.33N
and 144.57N. In addition, we illustrate the crack opening
displacement volume, calculated for the intermediary time
step (load = 122.33N) in Fig. 6.

The result of executing the process B appears in Fig. 5,
in which we focus on a 1.5mm portion of the sample to
illustrate how to probe for deformations. We calculate the
average SSIM for each slice within the same stack, then
we plot the resulting values in terms of the z-axis. We
notice the existence of intervals of high dissimilarity, in
other words, low average SSIM, along the samples with
microfractures. This process takes usually less than a minute
using a general purpose desktop, and it is much faster in
comparison with other steps and can potentially prevent
unnecessary explorations by process A when there is no
crack. On the other hand, process A is essential to both
precisely locate the crack and to calculate the crack open
displacement since TV curves are restricted to probing the
depth in which the microfractures initiated.

The proposed algorithms as well as all the employed
image analysis tools were developed for Fiji [8], an open-
source framework for image processing, mostly applied to
biomedical images. All the figures were rendered using Fiji,
except for Fig. 5, which uses R ggplot2 package.



(a) (b) (c)

Figure 4. Composite deformation under different loads: sample before crack formation in gray (16.01N), initial sample damage at 122.33N in green,
and increased crack open displacement at 144.57N in red. (a) Rendering of three time steps with no transparencies, (b) cross-section of the sample under
16.01N, and (c) rendering exposing the fibers removed by the destriping algorithm.

Figure 5. TV curves based on SSIM: valley indicates depth where the material cracks occur.

IV. DISCUSSION

Microstructure characterization often requires evaluation
of materials under extrinsic parameters, such as temperature
and pressure. Before the utilization of composites, e.g., SiC-
based ceramic FRP, into the design of turbines and aircrafts,
several experiments are necessary to detect and evaluate
microfractures.

Data representation is essential for fully inspecting high
resolution images. Exploring the intelligent loading and
caching scheme of BigDataViewer [5], we have enabled easy
navigation of micro-CT data at multiple scales, avoiding
aliasing artifacts at different views.

We introduced image quality metrics to probe image
acquisition corruption and micro-damage, and illustrated the
results using real datasets. Our preliminary tests showed
that adjacent voxels tend to exhibit strong dependencies,
which motivated the design of TV curves as spatially varying
quality maps of the stack. These maps can provide infor-
mation about the degradation of the image and/or sample

deformations by pointing out the axial location of micro-
fractures, as illustrated in Fig. 5.

This paper proposed software based on open-source tools
to verify the existence of micro damage in 3D stacks of
microtomograph images. It also proposed algorithms to de-
tect the crack opening displacement as well as TV curves to
quickly check and compare the evolution of the deformation
when the material sample is under stress across time steps.
We also introduced a pattern recognition pipeline that can
explore parallelism to perform the required computations.
The proposed use of the tiled multi-resolution pyramids
stored in HDF5 multi-dimensional arrays also support anal-
ysis and processing of several resolutions independently and
concurrently.

V. CONCLUSION AND FUTURE WORK

We described an image analysis workflow for high-
resolution 3D micro-tomography data composed of coarse-
grain parallel algorithms. The proposed approach was tested



Figure 6. Rendering of automatically detected material crack opening.

on experimental micro-tomography datasets, allowing image
quality assessment and material structural damage detection.
We solved data representation issues by adopting a portable
data format that provides efficient input and output, supports
unlimited file sizes and has built-in and extensible compres-
sion facilities.

The presented analytical scheme offers several opportuni-
ties for parallelism, for example, by dispatching SSIM con-
currently, which is calculated in independent image blocks.
Also, TV curves and the crack detection calculations are
independent, although these processes are complementary
during the process of detecting material deformation from
3D temporal datasets. While this paper describes the design
of the algorithms, the deployment of concurrent processing
of several resolutions are to be delivered. Finally, each one
of the processes individually provides a high scalability ratio
with respect to the data size, given the low computing cost
of SSIM and the potential for extending the spectral analysis
using fast parallel approaches, such as ArrayFire [3].

Future directions include tests on larger datasets using
extreme conditions of pressure and temperature, as well
as statistical tools to show frequency of crack opening
displacements, such as the thickness variation of the crack as
exemplified in Fig. 6. New implementations might include
comparisons with other crack detection methods, such as
Hessian eigenvalues and percolation.
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